16 research outputs found

    Dynamic performance of transmission pole structures under blasting induced ground vibration

    Get PDF
    Structural integrity of electric transmission poles is crucial for the reliability of power delivery. In some areas where blasting is used for mining or construction, these structures are endangered if they are located close to blasting sites. Through field study, numerical simulation and theoretical analysis, this research investigates blast induced ground vibration and its effects on structural performance of the transmission poles. It mainly involves: (1) Blast induced ground motion characterization; (2) Determination of modal behavior of transmission poles; (3) Investigation of dynamic responses of transmission poles under blast induced ground excitations; (4) Establishment of a reasonable blast limit for pole structures; and (5) Development of heath monitoring strategies for the electric transmission structures. The main technical contributions of this research include: (1) developed site specific spectra of blast induced ground vibration based on field measurement data; (2) studied modal behavior of pole structures systematically; (3) proposed simplified but relatively accurate finite element (FE) models that consider the structure-cable coupling; (4) obtained dynamic responses of transmission pole structures under blast caused ground vibration both by spectrum and time-history analysis; (5) established 2 in/s PPV blast limit for transmission pole structures; (6) developed two NDT techniques for quality control of direct embedment foundations; and (7) described an idea of vibration-based health monitoring strategy for electric transmission structures schematically

    Seismic retrofit design and risk assessment of an irregular thermal power plant building

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154642/1/tal1719_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154642/2/tal1719.pd

    Dynamic Study of a Rooftop Vertical Axis Wind Turbine Tower Based on an Automated Vibration Data Processing Algorithm

    No full text
    When constructed on tall building rooftops, the vertical axis wind turbine (VAWT) has the potential of power generation in highly urbanized areas. In this paper, the ambient dynamic responses of a rooftop VAWT were investigated. The dynamic analysis was based on ambient measurements of the structural vibration of the VAWT (including the supporting structure), which resides on the top of a 24-story building. To help process the ambient vibration data, an automated algorithm based on stochastic subspace identification (SSI) with a fast clustering procedure was developed. The algorithm was applied to the vibration data for mode identification, and the results indicate interesting modal responses that may be affected by the building vibration, which have significant implications for the condition monitoring strategy for the VAWT. The environmental effects on the ambient vibration data were also investigated. It was found that the blade rotation speed contributes the most to the vibration responses

    A methodology for cable damage identification based on wave decomposition

    No full text
    © 2018 Elsevier Ltd Vibration-based damage identification has been widely studied in the field of structural health monitoring (SHM) for several decades. It is well known, however, that low-order modal parameters, being among the most frequently used, are not sensitive to local damage. A suitable methodology is therefore needed to extract such damage features from the dynamic response of structures. In the present work, local bending behavior of cables is studied for damage identification. First, the dynamic response of a cable is decomposed into evanescent wave and propagating wave components. It is proven that the contribution of the evanescent wave is spatially concentrated, and is sensitive to local damage. A signal transform is proposed next, which allows the estimation of the wave components from the measured cable response. The reflection coefficient of the evanescent wave (REW), which can be calculated from the estimated wave coefficients, depends only on the characteristics of the local discontinuity, and proves to be a robust indicator for local damage. The feasibility of the proposed methodology is studied by means of a simulated experiment, considering a cable model with two locally damaged parts. The results show that the intensity of REW is significantly higher near the damage locations, allowing damage localization. From the estimated REW near the damage locations, the damage levels can be estimated, showing the potential of this methodology for damage assessment of cable structures.status: publishe

    A two-step methodology for cable force identification

    No full text
    status: publishe

    A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    No full text
    This article presents a hardware design for a low-cost energy-efficient geophone system to better facilitate field applications of the passive surface wave survey

    A New Cable-Less Seismograph with Functions of Real-Time Data Transmitting and High-Precision Differential Self-Positioning

    No full text
    This study developed a new cable-less seismograph system, which can transmit seismic data in real-time and automatically perform high-precision differential self-positioning. Combining the ZigBee technology with the high-precision differential positioning module, this new seismograph system utilized the wireless personal area network (WPAN) and real-time kinematic (RTK) technologies to improve its on-site performances and to make the field quality control (QC) and self-positioning possible. With the advantages of low-cost, good scalability, and good compatibility, the proposed new cable-less seismograph system can improve the field working efficiency and data processing capability. It has potential applications in noise seismology and mobile seismic monitoring
    corecore